e3sm_to_cmip

E3SM

Feb 09, 2023

1 Usage
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

FOR USERS

3
Getting Started L e e e e e e e e e 3
Preprocessing Databy Realm oo 5
USage . . . o e e e 6
Examples o . e e e e e e e e 10
CWL Workflows o o e 14
Variable Handlers e 16
High Frequency Data e 19
Development Guide e 20

e3sm_to_cmip

The e3sm_to_cmip package converts E3SM model output variables to the CMIP standard format. The tool supports
variables in the atmospheric, land, MPAS ocean, and MPAS sea-ice realms. The handling of each realm is slightly
different, so care must be made when dealing with the various data types (refer to Preprocessing Data by Realm)

FOR USERS 1

e3sm_to_cmip

2 FOR USERS

CHAPTER
ONE

USAGE

First, follow the Getting Started page for how to access e3sm_to_cmip in an Anaconda environment.
Afterwards, there are two main ways to run e3sm_to_cmip:
1. Invoking the e3sm_to_cmip package directly on the appropriately pre-processed input files
* Usage Guide
o Examples
2. Using the automated CWL workflows provided in the scripts/cwl_workflows directory in the repository.

* Leveraging CWL Workflows

1.1 Getting Started

1.1.1 Prerequisites

e3sm_to_cmip is distributed through conda, which is available through Anaconda and Miniconda. The instruction to
install conda from Miniconda is provided as follows:

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh

Then follow the instructions for installation. To have conda added to your path you will need to type yes in response
to “Do you wish the installer to initialize Miniconda3 by running conda init?”” (we recommend that you do this). Note
that this will modify your shell profile (e.g., ~/.bashrc) to add conda to your path.

Note: After installation completes you may need to type bash to restart your shell (if you use bash). Alternatively, you
can log out and log back in.

1.1.2 Installation

1. Create a conda environment from scratch with e3sm_to_cmip (conda create)

We recommend using the Conda environment creation procedure to install e3sm_to_cmip. The advantage with
following this approach is that Conda will attempt to resolve dependencies (e.g. python >= 3.8) for compati-
bility.

To create an e3sm_to_cmip conda environment run:

conda create -n <ENV_NAME> -c conda-forge e3sm_to_cmip
conda activate <ENV_NAME>

https://docs.conda.io/projects/conda/en/latest/commands/create.html?highlight=create

e3sm_to_cmip

2. Install e3sm_to_cmip in an existing conda environment (conda install)

You can also install e3sm_to_cmip in an existing Conda environment, granted that Conda is able to resolve the
compatible dependencies.

conda activate <ENV_NAME>
conda install -c conda-forge e3sm_to_cmip

3. Conda Development Environment and Source Code
This environment is intended for developers.

First, clone the repo and set up the conda dev environment:

git clone https://github.com/E3SM-Project/e3sm_to_cmip.git
cd e3sm_to_cmip

conda env create -f conda-env/dev.yml

conda activate e3sm_to_cmip_dev

Once you have dev environment setup, simply run:

pip install .

1.1.3 Additional Dependencies

The following dependencies are required to run e3sm_to_cmip for all normal runs (--info or --simple flag not
specified).

CMIP6 Controlled Vocabulary Tables

This repository needs to be cloned because it is not currently available as a data package on conda-forge.

1. Clone the repository

git clone https://github.com/PCMDI/cmip6-cmor-tables.git

2. Example usage with e3sm_to_cmip

e3sm_to_cmip --help

-t <tables-path>, --tables-path <tables-path>
Path to directory containing CMOR Tables directory,
required unless the --simple flag is used.

CMIP6 Metadata Tables

This repository needs to be cloned because it is not currently available as a data package on conda-forge.

1. Clone the repository

git clone https://github.com/E3SM-Project/CMIP6-Metadata.git

2. Example usage with e3sm_to_cmip

4 Chapter 1. Usage

https://docs.conda.io/projects/conda/en/latest/commands/install.html?highlight=install

e3sm_to_cmip

e3sm_to_cmip --help

-u <user_input_json_path>, --user-metadata <user_input_json_path>
Path to user json file for CMIP6 metadata, required
unless the --simple flag is used.

1.2 Preprocessing Data by Realm

The e3sm_to_cmip package can operate on variables in four realms: atmosphere, land, ocean, and sea-ice. Each
realm requires different preprocessing steps for its related input datasets.

1.2.1 Atmosphere

Processing atmosphere variables requires that each of the input variables be provided in regridded time-series files (mul-
tiple files spanning different time segments is supported), and follow the NCO naming format of VARNAME_START_END.
nc (e.g., PRECC_185001_201412.nc).

e NOTE: 3D atmosphere variables

A subset of the 3D atmosphere variables require that they be converted from the internal model vertical levels over to
the "plev19" levels. A copy of the vertical remap file can be found here

CMIP6 files requiring this vertical level change are: "hur", "hus", "ta", "ua", "va", "wap", and "zg".

1.2.2 Land

Similarly to the atmospheric variables, land variables must be provided as regridded time-series files in the NCO naming
format.

1.2.3 MPAS ocean

MPAS Ocean variables are regridded at run time, so they don’t require preprocessing. These files should all be present
in the input directory. Data required for ocean processing are as follows:

1. mpaso.hist.am.timeSeriesStatsMonthly
2. mpaso_in or mpas-o_in

3. one mpaso restart file

1.2.4 MPAS sea-ice

MPAS sea-ice variables are regridded at run time, and they don’t preprocessing. These files should all be present in
the input directory. Data required for ocean processing are as follows:

1. mpascice.hist.am.timeSeriesStatsMonthly or mpassi.hist.am.timeSeriesStatsMonthly
2. mpassi_in or mpas-cice_in

3. one mpassi or mpascice restart file

1.2. Preprocessing Data by Realm 5

https://github.com/E3SM-Project/e3sm_to_cmip/raw/master/e3sm_to_cmip/resources/vrt_remap_plev19.nco

e3sm_to_cmip

1.3 Usage

The code block below shows the available flags when running e3sm_to_cmip. Please be aware that some arguments
are required or optional based on how e3sm_to_cmip.

$ e3sm_to_cmip --help

usage: e3sm_to_cmip [-h]

Convert ESM model output into CMIP compatible format

required arguments (general):

-v [...], --var-list [...]

Space separated list of variables to convert from
E3SM to CMIP.

required arguments (without --info):

-i , --input-path Path to directory containing e3sm time series data
files. Additionally namelist, restart, and 'region'
files if handling MPAS data. Region files are
available from https://web.lcrc.anl.gov/public/e3sm/i
nputdata/ocn/mpas-o/<mpas_mesh_name>.

required arguments (without --simple):

-0 , --output-path Where to store cmorized output.

-t <tables-path>, --tables-path <tables-path>
Path to directory containing CMOR Tables directory,
required unless the "--simple’ flag is used.

-u <user_input_json_path>, --user-metadata <user_input_json_path>
Path to user json file for CMIP6 metadata, required
unless the "--simple’ flag is used.

required arguments (with --realm [mpasso|mpassi]):

--map <map_mpas_to_std_grid>
The path to an mpas remapping file. Required if realm
is 'mpaso' or 'mpassi'. Available from
https://web.lcrc.anl.gov/public/e3sm/mapping/maps/.

optional arguments (general):

-n <nproc>, --NumM-proc <nproc>
Optional: number of processes, default = 6. Not used
when -s, --serial specified.

--debug Set output level to debug.

--timeout TIMEOUT Exit with code -1 if execution time exceeds given

time in seconds.

-H <handler_path>, --handlers <handler_path>
Path to cmor handlers directory, default is the
(built-in) 'e3sm_to_cmip/cmor_handlers'.

--precheck PRECHECK Check for each variable if it's already in the output
CMIP6 directory, only run variables that don't have
pre-existing CMIP6 output.

--logdir LOGDIR Where to put the logging output from CMOR.

--custom-metadata CUSTOM_METADATA
The path to a json file with additional custom
metadata to add to the output files.

optional arguments (run mode):

--info Print information about the variables passed in the
--var-list argument and exit without doing any
processing. There are three modes for getting the
info, if you just pass the --info flag with the

(continues on next page)

6 Chapter 1. Usage

e3sm_to_cmip

(continued from previous page)

--var-list then it will print out the information for
the requested variable. If the --freq <frequency> is
passed along with the --tables-path, then the CMIP6
tables will get checked to see if the requested
variables are present in the CMIP6 table matching the
freq. If the --freq <freg> is passed with the
--tables-path, and the --input-path, and the input-
path points to raw unprocessed E3SM files, then an
additional check will me made for if the required raw
variables are present in the E3SM output.

--simple Perform a simple translation of the E3SM output to
CMIP format, but without the CMIP6 metadata checks.
(WARNING: NOT WORKING AS OF 1.8.2)

-s, --serial Run in serial mode (by default parallel). Useful for
debugging purposes.

optional arguments (run settings):

--realm <realm> The realm to process. Must be atm, 1nd, mpaso or
mpassi. Default is atm.

-f FREQ, --freq FREQ The frequency of the data (default is 'mon' for
monthly). Accepted values are 'mon', 'day', '6hrLev',
'6hrPlev', '6hrPlevPt', '3hr', 'lhr.

optional arguments (with --info):

--info-out INFO_OUT If passed with the --info flag, will cause the
variable info to be written out to the specified file
path as yaml.

helper arguments:

-h, --help show this help message and exit

--version Print the version number and exit.

Additional descriptions of some of the arguments can be found below.

1.3.1 Required arguments (general):

Variable List

The “~var-list” or “-v” flag is a mandatory option, and should be a list of CMIP6 variable names to be output.

1.3.2 Required arguments (without —info)

Input Path

This mandatory flag should point at a directory containing the data files to be processed.

1.3. Usage 7

e3sm_to_cmip

User Input Metadata
The “~user-metadata” or “-u” flag should be the path to a json formatted metadata file containing CMIP6 metadata for

the case being processed. This flag can be avoided for non-official data by using the “—simple” flag. Otherwise, the file
should look something like the metadata files that can be found here

Tables Path

The “—tables-path” or “-t” flag should point to the “Tables” directory of the CMIP6 controlled vocabulary repository.
The repository can be found here

1.3.3 Required arguments (without —simple)

Output Path
This mandatory flag is the location that all output files will be placed. The main output is a directory named CMIP6,
which contains the CMIP6 directory structure, with the output files as leaf nodes. Other output files include a copy

of the user metadata (if present), and a directory named cmor_logs containing the per-variable log files generated by
CMOR.

1.3.4 Required arguments (with —realm [mpasso|mpassi])

MPAS mapfile

When processing MPAS ocean or sea-ice variables, a mapfile is needed for regridding. Use the “—map” flag to pass
the path to this mapfile.

1.3.5 Optional arguments (general)

Numproc
By default, the variable converters are run in parallel using a process pool with 6 worker processes. The “—num-proc”
or “-n” flag can be used to control the number of simultaneously executing processes. For example, 3D ocean fields

take significantly more RAM then other variables, so the number of converters running at once may be reduced to
accommodate the machine being used.

Handler Path

A directory of custom variable handlers can be passed using the “~handlers” or “-H” flag.

8 Chapter 1. Usage

https://github.com/E3SM-Project/CMIP6-Metadata
https://github.com/PCMDI/cmip6-cmor-tables/

e3sm_to_cmip

Custom Metadata

Additional custom metadata can be added to the global attributes of the output files by using the “—custom-metadata”
flag to point to a json formatted file containing the metadata key value pairs.

1.3.6 Optional arguments (run mode)

Info

The “—info” flag can be used in three different ways to determine information about the variables being requested
for processing. In the simplest form, passing only the “~info” and “—var-list” flags will return information about the
required input and CMIP6 output names of the variables passed in the variable list.

If the —freq <frequency> is passed along with the —tables-path, then the CMIP6 tables will get checked to see if the
requested variables are present in the CMIPG6 table matching the freq.

If the —freq <freq> is passed with the —tables-path, and the —input-path, and the input-path points to raw unprocessed
E3SM files, then an additional check will me made for if the required raw variables are present in the E3SM output.
In this last mode, instead of passing a directory of time-series files as the input path, pass the path to raw unprocessed
E3SM cam or eam files.

Simple

This optional flag will cause the tool to run without needing or checking for the custom CMIP metadata usually required
for processing. Output from this mode use the same converter code as the default mode, but the output doesnt contain
the required metadata needed for a CMIP publication. This mode should be used when the output is intended for
analysis, but is not suited for publication.

Serial

[T
-S

For debugging purposes, or when running in a resource constrained environment, the “—serial” or
be used to cause the conversion process to be run in serial, using the main process.

boolean flag can

1.3.7 Optional arguments (run settings)

Realm
The type of realm being operated on should be specified using the “—realm” flag. Allowed values are “atm”, “Ind”,

“mpaso” and “mpassi.” This is needed so that the package can correctly determine what type of input files to look for.
By default “atm”.

Frequency

The “—freq” and “-f” flags can be used to process high-frequency datasets. By default the tool assumes its working
with monthly data. The following submonthly frequencies are supported: [6hr, 6hrLev, 6hrPlev, 3hr, day]

1.3. Usage 9

e3sm_to_cmip

1.4 Examples

1.4.1 Simple atmosphere variable example

The first step in converting atmosphere variables is to do the regridding and time-series extraction. For this example,
assume there’s a directory named “atmos-input” that contains a single year of cam.h0 monthly history files, and the
target is to produce the “pr,” and “clt” variables.

The first step is to run a query to find what source variables are needed for these two output variables:

>> e3sm_to_cmip --info -v pr, clt
[*]

CMIP6 Name: clt,

CMIP6 Table: CMIP6_Amon.json,
CMIP6 Units: %,

E3SM Variables: CLDTOT,

Unit conversion: 1-to-%

[*]

CMIP6 Name: pr,

CMIP6 Table: CMIP6_Amon. json,
CMIP6 Units: kg m-2 s-1,

E3SM Variables: PRECC, PRECL

This shows that the clt CMIP variable needs the raw CLDTOT input variable, and pr needs both PRECC and PRECL.
The next step is to use ncclimo to extract the time-series and do the regridding. A detailed tutorial can be found here

This example uses files which look like “20191204.BDRD_CNPCTC_SSP585_OIBGC.ne30_oECv3.compy.cam.h0.1850-
01.nc”, and so their casename is “20191204.BDRD_CNPCTC_SSP585_OIBGC.ne30_oECv3.compy”.

>> ncclimo --start=0001 --end=0001 --ypf=1 -c <CASENAME> -0 ./native -0 ./regrid -v.
—CLDTOT,PRECC,PRECL -i ./atmos-input --map=<PATH TO YOUR MAPFILE>

Climatology operations invoked with command:
/export/baldwin32/anaconda3/envs/cwl/bin/ncclimo --start=2015 --end=2015 --ypf=1 -c.
20191204 .BDRD_CNPCTC_SSP585_0IBGC.ne30_oECv3.compy -o ./native --regrid=./regrid -v.
—CLDTOT,PRECC,PRECL -i ./atm_testing -v CLDTOT,PRECC,PRECL --map=/export/zenderl/data/
—maps/map_ne30np4_to_cmip6_180x360_aave.20181001.nc

Started climatology generation for dataset 20191204 .BDRD_CNPCTC_SSP585_0IBGC.ne30_oECv3.
—compy at Tue Nov 24 15:05:20 PST 2020

Running climatology script ncclimo from directory /export/baldwin32/anaconda3/envs/cwl/
—bin

NCO binaries version 4.9.3 from directory /export/baldwin32/anaconda3/envs/cwl/bin
Parallelism mode = background

Timeseries will be created for each of 3 variables

Background parallelism processing variables in var_nbr/job_nbr = 3/3 = 1 sequential.
—batches of job_nbr = 3 simultaneous jobs (1 per variable), then remaining 0 jobs/
—variables simultaneously

Will split data for each variable into one timeseries of length 1 years

Splitting climatology from 12 raw input files in directory ./atm_testing

Each input file assumed to contain mean of one month

Native-grid split files to directory ./native

Regridded split files to directory ./regrid

Tue Nov 24 15:05:21 PST 2020: Generated ./native/CLDTOT_201501_201512.nc

Tue Nov 24 15:05:21 PST 2020: Generated ./native/PRECC_201501_201512.nc

(continues on next page)

10 Chapter 1. Usage

https://www.youtube.com/watch?v=AJyAjH-1HuA

e3sm_to_cmip

(continued from previous page)

Tue Nov 24 15:05:21 PST 2020: Generated ./native/PRECL_201501_201512.nc

Tue Nov 24 15:05:22 PST 2020: Regridded ./regrid/CLDTOT_201501_201512.nc

Tue Nov 24 15:05:22 PST 2020: Regridded ./regrid/PRECC_201501_201512.nc

Tue Nov 24 15:05:22 PST 2020: Regridded ./regrid/PRECL_201501_201512.nc

Quick plots of last variable split in last segment:

ncview ./regrid/PRECL_201501_201512.nc &

panoply ./regrid/PRECL_201501_201512.nc &

Completed 1-year climatology operations for dataset with caseid = 20191204 .BDRD_CNPCTC_
—SSP585_0IBGC.ne30_oECv3.compy at Tue Nov 24 15:05:22 PST 2020

Elapsed time Om2s

The next step is to call the e3sm_to_cmip package and use the time-series files as input:

>> e3sm_to_cmip -i regrid/ -o cmip_output -v prc, clt -t <PATH TO CMIP6 TABLES> -u <PATH.
—TO CMOR USER INPUT J]SON>

[*] Writing log output to: cmip_output/converter.log

[+] Running CMOR handlers in parallel

100%|| 2/2 [00:01<00:00, 1.96it/s]

[+] 2 of 2 handlers complete

Alternately, if the data isn’t going to be published to CMIP6, the “simple” mode can be used which doesnt require
the full CMIP6 tables or metadata and produces output files that are very close to the CMIP6 requirements, but with
placeholder metadata

>> python -m e3sm_to_cmip -i regrid -o cmip_output -v prc, clt --simple

[*] Writing log output to: cmip_output/converter.log

[+] Running CMOR handlers in parallel

[+] writing out variable to file /cmip_output/prc_CMIP6_Amon_201501-201512.nc o
o | 0/2 [00:00<?, ?it/s][+] writing.
—out variable to file /p/user_pub/e3sm/baldwin32/workshop/ssp585/ssp585/output/pp/cmor/
—»ssp585/2015_2100/cmip_output/prc_CMIP6_Amon_201501-201512.nc

[+] writing out variable to file /cmip_output/clt_CMIP6_Amon_201501-201512.nc

100%|| 2/2 [00:00<00:00, 6.79it/s]

[+] 2 of 2 handlers complete

1.4.2 Plev atmosphere variable example

Some 3D atmosphere CMIP6 variables are on the plev19 vertical levels instead of the model and require remapping
from the default model levels to the plev19 levels. These variables can be distinguished from model-level variables by
the Levels field in their info having the name plev19.

An example us the hus variable

>> e3sm_to_cmip --info -v hus

[*]

CMIP6 Name: hus,

CMIP6 Table: CMIP6_Amon. json,

CMIP6 Units: 1,

E3SM Variables: Q

Levels: {'name': 'plev19', 'units': 'Pa', 'e3sm_axis_name': 'plev'}

1.4. Examples 11

e3sm_to_cmip

Before performing the horizontal remapping, the raw files must first be vertically remapped using the following com-
mand and the plev19 vertical remapping file which can be found here

mkdir vrt_regrid
for file in "1s atm-input’
do
ncks --rgr xtr_mth=mss_val --vrt_fl=vrt_remap_plev19.nc ./atm-input/$file ./vrt_regrid/
$file
done

The output files will be converted from the default 72 vertical levels which come out of the E3SM model into 19 vertical
levels defined by the CMIP6 project. These files can then be regridded and converted as in the example above.

1.4.3 End-to-End High Frequency Example

The first step is to check what variables in the raw input data are possible to be converted at the desired frequency.
For this we need to use the “info” option and give it three things, the frequency of data we want to convert, the input
path to the raw data (not time-series, but native model output), and the location of our copy of the CMIP6 controlled
vocabulary tables:

>> e3sm_to_cmip --info -v all --input /p/user_pub/work/E3SM/1_0/historical/ldeg_atm_60-
—30km_ocean/atmos/native/model-output/day/ensl/vl/ --tables ~/projects/cmip6-cmor-
—.tables/Tables/

[*]

CMIP6 Name: huss,

CMIP6 Table: CMIP6_day.json,
CMIP6 Units: 1,

E3SM Variables: QREFHT

[*]

CMIP6 Name: tas,

CMIP6 Table: CMIP6_day.json,
CMIP6 Units: K,

E3SM Variables: TREFHT

[*]

CMIP6 Name: tasmin,

CMIP6 Table: CMIP6_day.json,
CMIP6 Units: K,

E3SM Variables: TREFHTMN

[*]

CMIP6 Name: tasmax,

CMIP6 Table: CMIP6_day.json,
CMIP6 Units: K,

E3SM Variables: TREFHTMX

[*]

CMIP6 Name: rlut,

CMIP6 Table: CMIP6_day.json,
CMIP6 Units: W m-2,

E3SM Variables: FLUT

The next step is to find and setup the corresponding CWL workflow, in this case since we’re processing daily data we
want to use the “atm-day” workflow under e3sm_to_cmip/scripts/cwl_workflows which you can find here. The CWL
parameter file atm-day-job.yaml needs to be edited with the values for our case. We need to take the E3SM variable
names given by the “~info” request earler and put them into the std_var_list parameter, and take the CMIP6 variable

12 Chapter 1. Usage

https://github.com/E3SM-Project/e3sm_to_cmip/blob/master/e3sm_to_cmip/resources/vrt_remap_plev19.nc?raw=true
https://github.com/E3SM-Project/e3sm_to_cmip/tree/master/scripts/cwl_workflows/atm-day

e3sm_to_cmip

names and put them into the std_cmor_list parameter. Create a new directory to hold your output, and place the
new parameter file there.

path to the raw model data
data_path: /p/user_pub/work/E3SM/1_0/historical/ldeg_atm_60-30km_ocean/atmos/native/
—.model-output/day/ensl/v1/

size of output data files in years
frequency: 25

number of ncremap workers
num_workers: 12

slurm account info
account: e3sm
partition: debug
timeout: 2:00:00

horizontal regridding file path
hrz_atm_map_path: /export/zenderl/data/maps/map_ne3®np4_to_cmip6_180x360_aave.20181001.nc

path to CMIP6 tables directory
tables_path: /export/baldwin32/projects/cmip6-cmor-tables/Tables/

path to CMOR case metadata
metadata_path: /p/user_pub/e3sm/baldwin32/resources/CMIP6-Metadata/1.0/historical_ensl.
—json

list if E3SM raw variable names
std_var_list: [QREFHT, TREFHT, TREFHTMN, TREFHTMX, FLUT]

list of CMIP6 variable names
std_cmor_list: [huss, tas, tasmin, tasmax, rlut]

Make a temp directory to contain the intermediate files created by the workflow, and set it as your TMPDIR

cd /p/user_pub/e3sm/baldwin32/workshop/highfreq/1.0/historical
mkdir tmp
export TMPDIR=/p/user_pub/e3sm/baldwin32/workshop/highfreq/1.0/historical/tmp

And startup the CWL workflow

>> cwltool --tmpdir-prefix=$TMPDIR --preserve-environment UDUNITS2_XML_PATH ~/projects/
—e3sm_to_cmip/scripts/cwl_workflows/atm-day/atm-day.cwl historical-atm-day-ensl.yaml

This will launch a fairly long running job as it steps through all the parts of the workflow. If you’re running a very large
set of data, it can help to use the nohup tool to wrap the command so it doesnt get interupted by logging out.

1.4. Examples 13

e3sm_to_cmip

1.4.4 Simple MPAS Ocean variable example

Unlike Atmos and Land data, e3sm_to_cmip can work directly with the native MPAS Ocean (and Sea-Ice) model output
files to cmorize selected variables.

The command line requires the following inputs (example for variable “thetao”):

--realm mpaso

-v thetao

--input The path to your input directory. [Raw MPAS ocean datafiles, plus namelist,.
—restart, and mappings files[*]]

--map The path to an mpas remapping file. [Required for realm mpaso and mpassi. .
—Available from https://web.lcrc.anl.gov/public/e3sm/mapping/maps/

--user-metadata <path_to_your_metadata/name.json> [Required unless "-simple" is.
—.specified]

--tables-path <Path to directory containing CMOR Tables directory> [Required unless
—'"-simple" is specified]

--output-path <Path to the directory for generated output>

[*] The input directory for MPAS processing must also include

namelist: mpaso_in
restart: (e.g.) mpaso.rst.1851-01-01_00000.nc (from the native output)
regionfile: (e.g.) oEC60to30v3_Atlantic_region_and_southern_transect.nc

Region files are available from https://web.lcrc.anl.gov/public/e3sm/inputdata/ocn/mpas-o/<mpas_mesh_name>.

1.5 CWL Workflows

There is a set of CWL workflow scripts in the repository (/scripts/cwl_workflows) for each realm. Each workflow
breaks the input files up into manageable segment size and perform all the required input processing needed before
invoking e3sm_to_cmip. These scripts have been designed to run on a SLURM cluster in parallel and will process an
arbitrarily large set of simulation data in whatever chunk size required.

1.5.1 Setting up your CWL environment

To use the CWL workflows you will need additional dependencies in your environment:

conda install -c conda-forge cwltool nodejs

When CWL runs it needs somewhere to store its intermediate files. By default it will use the systems $TMPDIR but
in some cases that wont work, for example on NERSC the compute nodes wont have access to the login nodes /tmp
directory. An easy solution for this is to create a directory on a shared mount, and run export TMPDIR=/path/to/
shared/location and then when running the cwltool use the --tmpdir-prefix=$TMPDIR argument.

14 Chapter 1. Usage

https://web.lcrc.anl.gov/public/e3sm/inputdata/ocn/mpas-o

e3sm_to_cmip

1.5.2 Using the CWL Workflows

Each of the directories under scripts/cwl_workflows holds a single self-contained workflow. The name of the
workflow matches the name of the directory, for example under the mpaso directory is a file named mpaso . cwl which
contains the workflow.

The beginning of each workflow contains an inputs section which defines the required parameters, for example

inputs:
data_path: string
metadata: File
workflow_output: string

mapfile: File
frequency: int

namelist_path: string
region_path: string
restart_path: string

tables_path: string
cmor_var_list: string[]

timeout: int
partition: string
account: string

Along with each of the cwl workflows is an example yaml parameter file, for example along with mpaso.cwl is
mpaso-job.yaml which contains the following:

data_path: /p/user_pub/e3sm/staging/prepub/1_1_ECA/ssp585-BDRD//1deg_atm_60-30km_ocean/
—,ocean/native/model-output/mon/ensl/v0®/

workflow_output: /p/user_pub/e3sm/baldwin32/workshop/ssp585/ssp585/output/pp/cmor/ssp585/
—2015_2100

metadata:

class: File

path: /p/user_pub/e3sm/baldwin32/workshop/ssp585/ssp585/output/pp/cmor/ssp585/2015_
,2100/user_metadata. json
mapfile:

class: File

path: /export/zenderl/data/maps/map_oEC60to30v3_to_cmip6_180x360_aave.20181001.nc

frequency: 5

namelist_path: /p/user_pub/e3sm/baldwin32/workshop/E3SM-1-1-ECA.hist-bgc/mpaso_in
region_path: /p/user_pub/e3sm/baldwin32/resources/oEC60to30v3_Atlantic_region_and_
—»southern_transect.nc

restart_path: /p/user_pub/e3sm/baldwin32/workshop/E3SM-1-1-ECA.hist-bgc/mpaso.rst.1851-
-01-01_00000.nc

tables_path: /export/baldwin32/projects/cmor/Tables

timeout: 10:00:00
account: e3sm
partition: debug

(continues on next page)

1.5. CWL Workflows 15

e3sm_to_cmip

(continued from previous page)

cmor_var_list: [masso, volo, thetaoga, tosga, soga, sosga, zos, masscello, tos, tob, sos,
— sob, mlotst, fsitherm, wfo, sfdsi, hfds, tauuo, tauvo, thetao, so, uo, vo, Wo,.
—hfsifrazil, zhalfo]

Once the parameter file is complete, the workflow can be executed by calling the cwltool

cwltool --tmpdir-prefix=$TMPDIR ~/projects/e3sm_to_cmip/scripts/cwl_workflows/mpaso/
—.mpaso.cwl mpaso-job.yaml

1.6 Variable Handlers

1.6.1 What are Variable Handlers?

In e3sm_to_cmip, each supported CMIP6 variable has a CMOR “handler”. A handler defines the metadata necessary
for CMORizing E3SM variable(s) to their equivalent CMIP6 variable.

1.6.2 How are Variable Handlers Defined?

The metadata for variable handlers are defined in (key, value) pairs.

Required metadata:

Key Type Example Description
name string tas CMIP6 variable name
units string K CMIP6 variable’s units
raw_variablearray of | [TREFHT] The E3SM variable name(s) used in the conversion to the CMIP6 vari-
string(s) able.
table string CMIP6_Amonljsbhe default CMOR table filename. (Source: https://github.com/
PCMDI/cmip6-cmor-tables/Tables)

Optional metadata (based on variable, default is null):

Key Type\ Example Description

unit_comnieigato-kg An optional unit conversion formula for the final output data.

for- | string tas An optional conversion formula for calculating the final output data. Usually this is
mula defined if there are more than one raw variable.

pos- | “down’down The “positive” directive to CMOR enables data providers to specify the direction that
i- or they have assumed in fields (i.g. radiation fluxes has up or down direction) passed to
tive | “up” CMOR. If their direction is opposite that required by CMIP6 (as specified in the CMOR

tables), then CMOR will multiply the field by -1, reversing the sign for consistency with
the data request.

lev- | dic- | {name: Distinguishes model-level variables, which require remapping from the default model
els | tio- | plevl9, level to the level defined in the levels dictionary.

nary | units: Pa,
e3sm_axis_name:
plev}

16 Chapter 1. Usage

https://github.com/PCMDI/cmip6-cmor-tables/Tables
https://github.com/PCMDI/cmip6-cmor-tables/Tables

e3sm_to_cmip

1.6.3 Where are Variable Handlers Stored?

The supported CMIP6 variables and their handlers are defined in the E3SM CMIP6 Data Conversion Tables Confluence
page.

These handler definitions are transferred to the e3sm_to_cmip repository at the following locations:
1. e3sm_to_cmip/cmor_handlers/handlers.yaml
 Stores handler definitions for atmosphere and land variables.
 Each top-level entry defines a handler.
* There can be more than one handler per variable (e.g., to handle different frequencies)

e Example:

- name: pr
units: kg m-2 s-1
raw_variables: [PRECT]
table: CMIP6_day.json
unit_conversion: null
formula: PRECT * 1000.0
positive: null
levels: null

- name: pr
units: kg m-2 s-1
raw_variables: [PRECC, PRECL]
table: CMIP6_Amon.json
unit_conversion: null
formula: (PRECC + PRECL) * 1000.0
positive: null
levels: null

2. e3sm_to_cmip/cmor_handlers/vars directory (legacy design)
* Each handler is defined as Python module (. py file).

e Stores legacy atmosphere land variable handlers including: areacella.py, clisccp.py,
clcalipso.py, orog.py, pfull.py, and phal f.py.

* These handlers will be refactored into handlers.yaml. They either depend on CDAT modules or
contain replicated code that has since been generalized.

¢ Please avoid defining new handlers in this directory. Instead, add new handlers to handlers.
yaml.

3. e3sm_to_cmip/cmor_handlers/mpas_vars directory
* Each handler is defined as Python module (. py file).
* Stores handler definitions for MPAS ocean and sea-ice variable handlers.
* MPAS variables require additional processing requirements (e.g., use of mesh files).

* The development team is considering refactoring the design of these handlers.

1.6. Variable Handlers 17

https://acme-climate.atlassian.net/wiki/spaces/DOC/pages/858882132/CMIP6+data+conversion+tables
https://acme-climate.atlassian.net/wiki/spaces/DOC/pages/858882132/CMIP6+data+conversion+tables

e3sm_to_cmip

1.6.4 Working with Atmosphere and Land Variables

Realms: atm, 1nd

How to add atmosphere/land handlers

1. Append a new entry to the e3sm_to_cmip/cmor_handlers/handlers.yaml file.
2. If the handler has a formula, add a formula function to e3sm_to_cmip/cmor_handlers/_formulas.py.

* The function parameters must include data (a dictionary mapping variables to its underlying np.ndarray) and
index (the index within the array to apply the formula to).

* Example:

def clLitter(data: Dict[str, np.ndarray], index: int) -> np.ndarray:

i

cLitter = (TOTLITC + CWDC)/1000.0

e

outdata = (data["TOTLITC"][index, :] + data["CWDC"][index, :]) / 1000.0

return outdata

How e3sm_to_cmip derives atmosphere/land handlers
e3sm_to_cmip derives the appropriate variable handlers to use based on the available E3SM variables in the
input datasets. Afterwards, it applies any necessary unit conversions, formulas, etc. during the CMORizing process.

For example, let’s say we want to CMORize the variable "pr" and we pass an E3SM input dataset that has the variables
"PRECC" and "PRECL". e3sm_to_cmip derives the appropriate "pr" variable handler using this logic flow:

1. Run e3sm_to_cmip --var-list pr --input-path <SOME_INPUT_PATH>
2. In e3sm_to_cmip, --var-1ist is stored in a Python list (var_list=["pr"]).

3. All defined handlers are gathered in a dictionary called available_handlers:

Key = CMIP variable id, value = list of available handler objects.
—defined in ““handlers.yaml and °/cmor_handlers’
available_handlers = {
"pr': [
VarHandler (name="pr", raw_variables=["PRECT"]),
VarHandler (name="pr", raw_variables=["PRECC", "PRECL"]),

1,

}

4. Loop over var_list:

a. Get the list of handlers from available_handlers dict (for "pr")

L

VarHandler (name="pr", raw_variables=["PRECT"]),
VarHandler (name="pr", raw_variables=["PRECC", "PRECL"]),

]

b. Derive a handler using the variables in the E3SM input dataset

18 Chapter 1. Usage

e3sm_to_cmip

e The E3SM input dataset contains "PRECC" and "PRECL", so we derive the second handler,
VarHandler (name="pr", raw_variables=["PRECC", "PRECL"]).

¢ If no handler can be derived, an error is raised.
c. Append derived handler to final list of derived_handlers
5. Return derived_handlers=[VarHandler (name="pr", raw_variables=["PRECC", "PRECL"])]

1.6.5 Working with MPAS Ocean and Sea-ice Variables

Realms: mpaso, mpassi, SImon, and Omon

How to add MPAS variable handlers

Adding a variable handler for MPAS variable is slightly more involved process than for an atmosphere/land variable.

You need to create a Python module in /cmor_handlers/mpas_vars. We recommend taking a look at the existing
modules such as so.py to get idea on how to add an MPAS handler.

How e3sm_to_cmip derives MPAS variable handlers

MPAS variable handlers are derived differently than atmosphere/land variables. Instead of deriving handlers by check-
ing if the raw E3SM variable keys are found in the input E3SM datasets, MPAS variable handlers use extra input
files.

Within an MPAS variable handler module, a RAW_VARTIABLES static variable is instantiated (e.g., RAW_VARIABLES =
["MPASO", "MPAS_mesh", "MPAS_map"]).

e "MPASO" - The time series files
e "MPAS_MESH" - The mesh file
e "MPAS_map" - The mapping file

These individual elements are input files and not actually raw variables found in a dataset. All of these files are used
to convert the E3SM variable to the CMIP variable.

1.7 High Frequency Data

Data from sub-monthly frequency files (i.e. high frequency data) can be processed the same way as monthly data,
however the ncclimo commands to extract the time-series files is slightly different. Here’s an example of extracting
high-frequency time-series:

in_dir=./raw_data_path/

out_dir=./regridded_time_series/

native_out=./native_grid_time_series/

flags="'-7 --dfl_1vl=1 --no_cll_msr --clm_md=hfs'

variables="PRECT TS'

start_year="'1850"'

end_year="2000"'

years_per_output_file="'50"'

mapfile=${DATA}/maps/map_ne30v3_to_cmip6_180x360_aave.nc

ncclimo flags} -v ${variables} -0 out_dir} -o {native_out} --map=%{mapfile} -c.

historical =13 in dir
nistorical -1

(continues on next page)

1.7. High Frequency Data 19

e3sm_to_cmip

(continued from previous page)

|

Once you’ve extracted the time-series files, simply use the path to where they’re stored as the input path argument to
e3sm_to_cmip, and supply the --freq flag with the appropriate frequency.

1.8 Development Guide

1.8.1 Testing changes and debugging in Python

In older versions of e3sm_to_cmip, the only way to test changes was to run e3sm_to_cmip directly on the command
line. This debugging process often involves adding print or ipdb statements throughout the codebase, which generally
isn’t good practice because it is inefficient and developers might forget to delete those statements.

As of e3sm_to_cmip > 1.91, e3sm_to_cmip can now be executed through a Python script. Advantages of using
this approach include:

* Testing and debugging changes are significantly more efficient, which shortens the debugging cycle.
» Leverage IDEs to set breakpoints in IDEs and step through the call stack at runtime.

* Gain a better sense of how functions are manipulating variables and whether the correct behaviors are being
produced.

* Prototype code in the debugger and implement those changes, then test if it behaves as expected.

Example 1 (CMORizing serially)

CLI Execution

e3sm_to_cmip --output-path ../qa/tmp --var-list 'pfull, phalf, tas, ts, psl, ps, sfcWind,
< huss, pr, prc, prsn, evspsbl, tauu, tauv, hfls, clt, rlds, rlus, rsds, rsus, hfss, cl,
« clw, cli, clivi, clwvi, prw, rldscs, rlut, rlutcs, rsdt, rsuscs, rsut, rsutcs, rtmt,.

—abs550aer, od550aer, rsdscs, hur' --input-path /lcrc/group/e3sm/e3sm_to_cmip/input/atm-
—unified-eam-ncclimo --user-metadata /home/ac.tvo/E3SM-Project/CMIP6-Metadata/template.

—json --tables-path /home/ac.tvo/PCMDI/cmip6-cmor-tables/Tables/ --serial

Python Execution

from e3sm_to_cmip.__main__ import main

args = [

"--var-list",

'pfull, phalf, tas, ts, psl, ps, sfcWind, huss, pr, prc, prsn, evspsbl, tauu, tauv,.
—hfls, clt, rlds, rlus, rsds, rsus, hfss, cl, clw, cli, clivi, clwvi, prw, rldscs, rlut,
< rlutcs, rsdt, rsuscs, rsut, rsutcs, rtmt, abs550aer, od550aer, rsdscs, hur',

"--input",

"/lcrc/group/e3sm/e3sm_to_cmip/input/atm-unified-eam-ncclimo",

"--output",

"../qa/tmp",

"--tables-path",

"/lcrc/group/e3sm/e3sm_to_cmip/cmip6-cmor-tables/Tables/",

"--user-metadata",

"/lcrc/group/e3sm/e3sm_to_cmip/template.json",

(continues on next page)

20 Chapter 1. Usage

e3sm_to_cmip

(continued from previous page)

"--serial"

]

‘main()° creates an ‘E3SMtoCMIP" object and passes ‘args’ to it, which sets the object.
—parameters to execute a run.
main(args)

Example 2 (info mode)

CLI Execution

e3sm_to_cmip --info -v prw, pr --input /p/user_pub/work/E3SM/1_0/historical/ldeg_atm_60-
—»30km_ocean/atmos/native/model-output/day/ensl/vl/ --tables /home/vol3/PCMDI/cmip6-cmor-
—tables/Tables/

Python Execution

from e3sm_to_cmip.__main__ import main

args = [
n__infou’

"prw, pr",

"--input",

"/p/user_pub/work/E3SM/1_0/historical/ldeg_atm_60-30km_ocean/atmos/native/model-
—output/day/ensl/v1/",

"--output",

"../qa/tmp",

"--tables-path",

"/home/vo13/PCMDI/cmip6-cmor-tables/Tables/",
]

‘main()° creates an 'E3SMtoCMIP" object and passes ‘args to it, which sets object.
—parameters to execute a run.
main(args)

Example 3 (E3SMtoCMIP class inspection)

This process is useful for checking how e3sm_to_cmip interprets the CLI arguments, and which handlers are derived
based on --var-list.

from e3sm_to_cmip.__main__ import E3SMtoCMIP

args = [

"--var-list",

'pfull, phalf, tas, ts, psl, ps, sfcWind, huss, pr, prc, prsn, evspsbl, tauu, tauv,.
—hfls, clt, rlds, rlus, rsds, rsus, hfss, cl, clw, cli, clivi, clwvi, prw, rldscs, rlut,
- rlutcs, rsdt, rsuscs, rsut, rsutcs, rtmt, abs550aer, od550aer, rsdscs, hur',

"--input",

"/lcrc/group/e3sm/e3sm_to_cmip/input/atm-unified-eam-ncclimo",

(continues on next page)

1.8. Development Guide 21

e3sm_to_cmip

(continued from previous page)

"--output",

"../qa/tmp",

"--tables-path",
"/lcrc/group/e3sm/e3sm_to_cmip/cmip6-cmor-tables/Tables/",
"--user-metadata",
"/lcrc/group/e3sm/e3sm_to_cmip/template.json",

"--serial”

run = E3SMtoCMIP(args)

Now we can check the ‘E3SMtoCMIP" object attributes for the ‘run’ variable.
print (run.handlers)

22 Chapter 1. Usage

	Usage
	Getting Started
	Prerequisites
	Installation
	Additional Dependencies
	CMIP6 Controlled Vocabulary Tables
	CMIP6 Metadata Tables

	Preprocessing Data by Realm
	Atmosphere
	Land
	MPAS ocean
	MPAS sea-ice

	Usage
	Required arguments (general):
	Variable List

	Required arguments (without –info)
	Input Path
	User Input Metadata
	Tables Path

	Required arguments (without –simple)
	Output Path

	Required arguments (with –realm [mpasso|mpassi])
	MPAS mapfile

	Optional arguments (general)
	Numproc
	Handler Path
	Custom Metadata

	Optional arguments (run mode)
	Info
	Simple
	Serial

	Optional arguments (run settings)
	Realm
	Frequency

	Examples
	Simple atmosphere variable example
	Plev atmosphere variable example
	End-to-End High Frequency Example
	Simple MPAS Ocean variable example

	CWL Workflows
	Setting up your CWL environment
	Using the CWL Workflows

	Variable Handlers
	What are Variable Handlers?
	How are Variable Handlers Defined?
	Where are Variable Handlers Stored?
	Working with Atmosphere and Land Variables
	How to add atmosphere/land handlers
	How e3sm_to_cmip derives atmosphere/land handlers

	Working with MPAS Ocean and Sea-ice Variables
	How to add MPAS variable handlers
	How e3sm_to_cmip derives MPAS variable handlers

	High Frequency Data
	Development Guide
	Testing changes and debugging in Python
	Example 1 (CMORizing serially)
	Example 2 (info mode)
	Example 3 (E3SMtoCMIP class inspection)

